Inhibition of p38 MAPK reverses hypoxia-induced pulmonary artery endothelial dysfunction.

نویسندگان

  • Roshan P Weerackody
  • David J Welsh
  • Roger M Wadsworth
  • Andrew J Peacock
چکیده

Hypoxia-induced endothelial dysfunction plays a crucial role in the pathogenesis of hypoxic pulmonary hypertension. p38 MAPK expression is increased in the pulmonary artery following hypoxic exposure. Recent evidence suggests that increased p38 MAPK activity is associated with endothelial dysfunction. However, the role of p38 MAPK activation in pulmonary artery endothelial dysfunction is not known. Sprague-Dawley rats were exposed to 2 wk hypobaric hypoxia, which resulted in the development of pulmonary hypertension and vascular remodeling. Endothelium-dependent relaxation of intrapulmonary vessels from hypoxic animals was impaired due to a reduced nitric oxide (NO) generation. This was despite increased endothelial NO synthase immunostaining and protein expression. Hypoxia exposure increased superoxide generation and p38 MAPK expression. The inhibition of p38 MAPK restored endothelium-dependent relaxation, increased bioavailable NO, and reduced superoxide production. In conclusion, the pharmacological inhibition of p38 MAPK was effective in increasing NO generation, reducing superoxide burden, and restoring hypoxia-induced endothelial dysfunction in rats with hypoxia-induced pulmonary hypertension. p38 MAPK may be a novel target for the treatment of pulmonary hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway

Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...

متن کامل

Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways

Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...

متن کامل

Direct ANP inhibition of hypoxia-induced inflammatory pathways in pulmonary microvascular and macrovascular endothelial monolayers.

Atrial natriuretic peptide (ANP) has been shown to reduce hypoxia-induced pulmonary vascular leak in vivo, but no explanation of a mechanism has been offered other than its vasodilatory and natriuretic actions. Recently, data have shown that ANP can protect endothelial barrier functions in TNF-alpha-stimulated human umbilical vein endothelial cells. Therefore, we hypothesized that ANP actions w...

متن کامل

Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3.

Carbon monoxide (CO), a reaction product of the cytoprotective gene heme oxygenase, has been shown to be protective against organ injury in a variety of models. One potential mechanism whereby CO affords cytoprotection is through its anti-apoptotic properties. Our studies show that low level, exogenous CO attenuates anoxia-reoxygenation (A-R)-induced lung endothelial cell apoptosis. Exposure of...

متن کامل

Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability.

Neuropilin-1 (Npn-1) is a cell surface receptor that binds vascular endothelial growth factor (VEGF), a potent mediator of endothelial permeability, chemotaxis, and proliferation. In vitro, Npn-1 can complex with VEGF receptor-2 (VEGFR2) to enhance VEGFR2-mediated endothelial cell chemotaxis and proliferation. To determine the role of Npn-1/VEGFR2 complexes in VEGF-induced endothelial barrier d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 296 5  شماره 

صفحات  -

تاریخ انتشار 2009